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1. INTRODUCTION

A promising, new, exact series, analytical method for solving di!erential equations is known
as the di!erential transformation (DT) method. It was introduced in 1986 [1] and is based
on the Taylor series expansion. It has recently been applied to vibration analysis of uniform
beams [1, 2] and plates [3].

The purpose of the present note is to apply the DT procedure to obtain exact solutions
for the free axial vibration of a tapered bar. The governing di!erential equation for the
mode shapes of this problem is a second order equation with varying coe$cients
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where ( )
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"d( )/dx, u (x) is the mode shape, x is the dimensionless axial position

co-ordinate (normalized by the bar's length ¸), and u6 is the dimensionless natural frequency
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Here A
0

is a characteristic area [in A(x)"2A
0
x], E is the elastic modulus, m

0
is

a characteristic mass [in m(x)"2m
0
x], and u is the circular natural frequency.

The boundary conditions are that the bar is "xed at x"1 and free at x"0:
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which implies
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2. DIFFERENTIAL TRANSFORMATION METHOD AND NUMERICAL RESULTS

An arbitrary function u (x) can be expanded in Taylor series at point x"0 as
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By de"ning a di!erential transformation of function u (x) as
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, (6)

one obtains the inverse di!erential transformation as

u (x)"
=
+
k/0

xk; (k) . (7)

Some useful operations needed in this problem can be derived from de"nitions (6) and (7)
as shown in Table 1.

Substituting equation (7) into equation (1), with the use of the basic operations, equation
(1) can be rewritten as
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Using equation (7), the boundary conditions, equations (3) and (4), become
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and
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kxk~1;(k)";(1)"0. (10)

To illustrate the procedure for eigenvalues, for k"0,2, 5, with the use of equation (10),
equation (8) becomes
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TABLE 1

Basic operations

Original function DT
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TABLE 2

Dimensionless frequencies for various summation numbers

First mode (exact analytical solution: 2.4048)
N 5 7 9 10

DT ("rst mode) 2)8284 2)3916 2)4056 2)4048
Di!erence (%) 17)62 0)55 0)03 0

Second mode (exact analytical solution: 5)5201)
N 10 12 20 21

DT ("rst mode) 5)9893 5)4059 5)5183 5)5201
Di!erence (%) 0)09 0)02 0)0003 0
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Substituting equation (11) into equation (9), one obtains

(!1
4
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64
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uN 4)uN 2; (0)"0. (12)

The roots of equation (12) are 0, $2)8284. The positive real root 2)8284 is the eigenvalue for
N"5. More terms are needed for more accurate results. The results for more terms are
listed in Table 2.

The exact solutions listed here are obtained by exact analytical solution in terms of Bessel
functions.

3. CONCLUSIONS

It has been shown that the DT method is a convenient and exact method for solving the
problem of free axial vibration of a tapered bar.
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